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SUMMARY

OBJECTIVE

Investigate the validity of a parabolic equation (PE) model for predicting radio field strengths in
horizontally inhomogeneous environments by performing comparisons between the model and
experimental data.

RESULTS

Excellent agreements were tound at VHF and UHF frequencies with good agreement in S- and
X-bands. In some cases, the predicted curves for the S-band comparisons underestimated that of the
measured data at large ranges. This may be the result of phenomena such as surface roughness,
backscatter, etc., not accounted for in the model. Discrepancies may also result from the presence of
evaporation ducts not included in the environmental inputs to the model because of a lack of detailed
measurements. This would account tor lower predicted signal levels at higher frequencies.
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1.0 INTRODUCTION

Many field-strength prediction models for tropospheric radiowave propagation over the ocean have
been written, based on the limitation that the environment is laterally homogeneous. It was found that
the assumption of a horizontally stratified troposphere led to valid propagation assessments 86% of the
time [1]. While the troposphere over the sea does exhibit horizontal homogeneity over relatively long
distances in most cases, meteorological conditions occur occasionally in which the environment may
change drastically in just a few kilometers, such as at air-mass boundaries associated with wave cyclones
and land/ocean interfaces [2]. It is safe to say that horizontally varying environments do occur 14% of
the time. This paper addresses the validity of the parabolic equation (PE) model for handling these
environments.

The more conventional method of modeling electromagnetic wave propagation in the troposphere
is performed by normal mode theory, but most modal techniques are based on a horizontally stratified
atmosphere. A parabolic equation method, originally developed by Fock in 1946, allowed the
environment to vary with range as well as height [3].

Two methods can be used to solve the PE. One method approximates the derivatives in the PE by
tinite differences. The other solves the PE (with some approximations) by the split-step Fourier method
developed by Hardin and Tappert [4]. The split-step method requires a constant vertical mesh size
because of the Fast Fourier Transtorms (FFT) used, which may require large data arrays for sufficient
sampling. The main advantage the split-step method has over finite difference is that it is more efficient
at higher frequencies. The disadvantage is that, with higher frequencies, one needs to have a larger
transform size (smaller vertical mesh size). The finite-difference method has the advantage that variable
height and range steps can be used to keep the number of data points stored at a minimum. Over the
relatively long distances at which one is interested in looking, the split-step method is more numerically
efficient because of the FFTs employed. The split-step algorithm thus allows real-time predictions based
on current environment descriptions.

While the acoustic community has been using PE modeling for some time, it was only recently
(within the last decade) that the radar community has applied the PE method to tropospheric radiowave
propagation [5--8}.

The importance of the split-step PE method is not only that it provides an exact solution to field
equations (within the limits of the operator approximation) for a homogeneous atmosphere in a relatively
short time, but that it can also predict (with relatively small errors) field strengths for laterally
inhomogeneous environments. The importance of taking into account an environment that varies with

:nge will become apparent as case studies are presented between experimental data and the predicted
fields.

A parabolic equation model for the personal computer (PEPC) was developed by Professor Fred
Tappert of the University of Miami in conjunction with the Naval Ocean Systems Center (NOSC),
San Diego, during 1989 and 1990. Comparisons between predicted PE fields and measured radio and
meteorological profiles on over-water paths from Guadalupe Island to San Diego in 1947 and 1948 are
presented [9]. Some comparisons also were made against experimental data taken from the Canterbury
Project [10]. The appendix contains a list of protiles used for the figures presented in this report.




2.0 BACKGROUND

2.1 REFRACTIVE EFFECTS

The refractive index, n, of air is defined as the ratio of the velocity of propagation of an
electromagnetic (EM) wave in a vacuum to that in air. Since EM waves travel more slowly in air than
in a vacuum, this ratio is always greater than one. At the Earth's surface, the numeric value of n is
usually between 1.000250 and 1.000400. A more convenient number to use is the refractivity, N, which
is defined as N = (n - 1)106. Normal surface N values then range from 250 to 400. Refractivity can
be expressed as a function ot atmospheric pressure, air temperature, and humidity as follows:

N = (77.6P)/IT + (3.73*10° ¢)/T2

where P is the pressure in millibars, T is the temperature in degrees Kelvin, and e is the vapor pressure
in millibars. In a "standard" well mixed atmosphere, both temperature and humidity decrease with
increasing height such that N decreases at the rate of about 39 N-units per kilometer. An EM wave
propagating initially horizontal to the Earth's surface will be refracted downward, but with a rate of
curvature less than that of the Earth. If the air temperature should increase with height, or the humidity
decrease abnormally fast with altitude, N will decrease faster than normal with height. If N decreases
faster than 157 N-units per kilometer, an EM wave will be refracted downward with a radius of curvature
greater than the Earth's surface. When this occurs, the EM wave can be trapped in a surface duct. The
EM wave is first retracted downward toward the surface and, if the surface is sufficiently smooth, the
wave is specularly reflected. This process can be repeated to ranges tar beyond the normal horizon.
Such continuous refractions/retlections form a surtace-based duct and allows radar detections at greatly
extended ranges.

A more convenient method for expressing the refractivity to determine the occurrence of ducting
is with the use of moditied refractivity, or M-units. M is defined in terms of N as

M=N+0.157h

for h in meters. Modified refractivity accounts for the curvature of the Earth and ducts can be determined
by inspection of M plotted versus height. Whenever M decreases with height, a trapping layer is formed
and indicated by a negative M-gradient. Examples of N and M plotted versus height for a standard
atmosphere (118 M-units per kilometer) are given in figure 1. In this figure, M increases with altitude
and no trapping layer or duct is formed. Figure 2 shows a plot where M decreases with height and forms
a trapping layer (in this case, a surface-based duct). If the M value at the top of the trapping layer is less
than that at the surtace, then a surface-based duct is formed. If the M value at the top of the trappin;
layer is greater than that at the surface, an elevated duct is formed; the vertical extent of the duct is
determined by the height below the trapping layer where the M value is equal to M at the top of the
trapping layer. Two other terms are used to describe N- or M-gradients other than standard or trapping,
namely subrefractive and superrefractive. Superrefractive means more bending than standard refraction
but less than trapping. Subrefractive means less retraction than standard. These atmospheres generally
do not have the spectacular effect on EM system performance that ducting does.
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Figure 1. Refractivity N and modified refractivity M versus altitude for a standard atmosphere.
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Figure 2. Refractivity N and modified refractivity M versus altitude for
a surface-based duct created by an elevated trapping layer.




Another measure of refractivity that was widely used in the 1940s is the B-unit, defined as
B=N+0039h

tor h in meters. Thus, for a standard atmosphere, B would be invariant with height.

The two distinct types of surface ducts that aftect naval EM systems are surtace-bhased ducts from
elevated layers and evaporation ducts. Surface-based ducts from elevated layers are formed by a sharp
change in the index of refraction gradient between a cool, moist marine air mass and a dryer, warmer air
mass above it. These ducts generally affect all systems with freauencies greater than about 100 MHz,
provided both transmitter and receiver/target are in or near the duc.. These ducts tend to be on the order
of 100 to 300 meters thick. This type of duct is quite common off the Southern California coast, where
the same temperature inversions that cause smog to be trappul in the Los Angeles air basin also create
strong surtace-based ducts at sea. The duct has a dramatic etfect on the signai level well * >yond the
horizon but, gznerally, does not greatly affect the signal level within and nezr the horizon. Quite often,
a "skip zone" is tormed where ranges just beyond the horizon are in the normal shadow zone, while
slightly greater ranges are illuminated by energy that has been refracted down by the trapping layer. The
range to, and extent of, the skip zone is coviously a complex function of the duct height, the M-unit
gradients, and the transmitter height. An example of such a skip zone is given in figure 3, which is a
raytrace diagram for a 25-meter transmitter antenna in a 100-meter surface-based duct. The trapping layer
is represented by the shaded area. The skip zone is from approximately 12 t, 17 nmi. For comparison,
the raytrace of figure 4 is at the same transmitter height but under standard atmospheric conditions.
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Figure 3. Raytrace diagram for a transmitter at 25 meters (m) in a
100-m surface-based duct resulting from an elevated layer.
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Figure 4. Raytrace diagram for a transmitter at 25 m, standard atmosphere conditions.

Evaporation ducts are created by a rapid decrease in humidity from the air/sea interface. These
ducts are limited by boundary-layer mechanics to perhaps 50 meters, although heights of less than 20
meters are the most common. Figure 5 is an example of a typical evaporation-duct M-unit profile. The
evaporation-duct height corresponds to the minimum on the M-unit profile and is a measure of the
strength ot the duct. Unlike the surface-based duct resulting from an elevated layer, the radar and the
target do not have to be "in” the duct for enhanced signal levels to be observed. These ducts primarily
aftect EM systems with frequencies greater than 3 GHz and, if a surface-based duct from an elevated
layer is present, it will be the dominant propagation mechanism for ranges well beyond the horizon.
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Figure 5. M-protile for a typical evaporation duct.




2.2 SPLIT-STEP PE MODEL

A brief discussion will be given of the PE method and how the program calculates field strength.
For more detailed descriptions of the theory, see (3, 4, 11]. In the following discussion, the troposphere
is assumed to vary in range and height only, making the field equations independent of azimuth. The
Earth's surface will be considered pertectly conducting, and only horizontal polarization will be addressed.

As with every electromagnetic wave problem, one begins with Maxwell's equations for steady-state
sinusoidal (harmonic) time-varying fields. Second-order partial differential equations (p.d.e.) for the
electric and magnetic fields can be derived from the coupled first-order differential equations by the usual
method. For a horizontally polarized electric dipole, the only nonzero component of the electric field is
Ee (r,0), where r, 8, ¢ represent spherical coordinates. To write the second-order p.d.e. in the form
of the scalar Helmholtz wave equation, a change of variable is used

Y (r,0) = {rsin®@ Ee(r,0) (n

and, changing from spherical to rectangular coordinates by using z = r - a and x = a0 (applying the
Earth-flattening transformation, valid for z/a<«1, x/a<1), one obtains the two-dimensional elliptic wave
gquation

) >
L., k(z) m(x,z)| ¥ (x,z2) =0 (2)
x &

m(x,z) = n{x,z) + z/a
k, = 2n/A

where now

¥ (x,2) = /x Ep(x,2) 3)

and x represents the horizontal spatial coordinate (range), z is the vertical coordinate (height), a is the
Earth's radius, k is the vacuum wavenumber, and m(x,z) is the modified index of refraction taking into
account the Earth's curvature and neglecting small terms, since we are only interested in the field at large
ranges (kx=1).

In much of the literature that has been published on the theoretical description of the derivation of
the PE, the parabolic approximation is stated in two ways. The first method removes rapid phase
variations (on the basis that one is only interested in field variations that are large compared to a
wavelength) by performing an envelope transformation

Yxz) = uxz) e (4)

which is substituted in equation 2 to give

,
LA T v 2ik, 2 ok (m? - D] u(nz) = 0. &)
axz or” ox )




The horizontal variation in u(x,z) is now assumed to be slow

Fu

ax-.a

@’ ©)

<2k, |2

in which case one is justified in neglecting the second-order partia! derivative in the horizontal component
in equation 5. The second method is to define an operator Q(x) and factor equation 2:

{aﬁx - ik, Q) 2. ikoo<x>] Wxz) + iko[a—i,%)} v(x2) =0 ™)
2
Q) = l7 “_*5 + m? ®)
& o
where
[%Q(x)} -2 -2 ©)

The quantities in brackets in equation 7 represent the equations for outward and inward propagating
waves, respectively. Since we are only interested in outward propagating waves, we use

0 .

5 Y (x,z) = ik, Q(x) ¢ (x,2). (10)
After substitution of equation 4, the final equation we must solve is

a KO

3 u(x,z) = ik, Q(x) u(x.2) (11)

where

Q(x) = Qx) - 1. (12)




This is now reduced to an initial value problem that neglects backscattering and can be solved by
“marching out” in range. Equation 11 is referred to in the literature as the general parabolic equation
(GPE), and is exact for a range-independent environment.

While it is not incorrect to make the assumption given by equation 6, the assumption necessarily
restricts accurate solutions to the field to near-horizontal directions or small propagating angles. The
second method has the advantage that approximations can be made for backscattered waves; the different
methods of approximating or "splitting” the operator Q(x) lead to different parabolic equation
propagators.

For the simplest case, assume that the index of refraction in Q(x) is range independent (m is
constant); then the field at some range x + Ax can be found from u(x);

x + Ax -
lkOJ'x Qx)dx u(x) - eikoAQ(X) u(x)

ux + Ax) = e (13)

At this point, Q(x) can be "split” to get ultimately a form for u(x + Ax) suitable for numerical
computation on a computer. Let us detine two new variables a and b:

Py
oz

cb=m?-1, (14)

7:",_.
c N
N

Q(x) can now be written as a function of a and b as
Q) = (1+a+bl2- . (15)

The two most widely used approximations for Q(x) are
Qi (x) =(I/a + (1/2)b (16a)
Q=+ + 1+ 1) -1 (16b)

where in Q, (x) the term under the radical in equation 15 has been expanded in a binominal series with
higher-order terms dropped. This approximation leads to the standard parabolic equation (SPE). Qz (x)
leads to the wide-angle parabolic equation (WAPE) originally derived by Feit and Fleck [12] to study
propagation in optical fibers, and later applied to acoustic propagation by Thomson and Chapman [13].

Thomson and Chapman have done extensive error analysis for the approximations Ql (x) and
02 (x) and have stated that Q2 (x) gives much more accurate numerical predictions at higher angles.
However, their application was toward acoustic propagation, in which severe ducting conditions (large
gradients) in the ocean can trap modes corresponding to relatively large propagation angles. For the
electromagnetic case, large gradients found in the troposphere are two orders of magnitude smaller than
that found in the ocean. So while the acoustic problem may need more accuracy at higher angles, for the
small propagation angles important in the electromagnetic case, Dockery [14] found no significant




improvement between the SPE propagator and the WAPE prepagator.  Therefore, the remainder of this
section will be dealing with the approximation given by Ql (x).

Q; (x) can now be used in equation 13:

ik_ Ax(A +B
u(x+Ax,z)=el° ¢ )

u(x,z) 17)
where

A = (1/2)a; B = (1/2)b.

The second-order partial derivative in the exponent can easily be handled by using Fourier transforms.
The Fourier transform is defined as

U(x,p) = Flu(x,2)] = J.: u(x,z) e‘ipzdz (18a)
u(x,z) = F U.p) = 2_1:? 2 ucp P az (18b)

where the transform variable p is k sin 0, 8 being the propagation angle above the horizontal. Using
the transform property that

anu(x,z) Z_‘ (_lp)n U(X,p) (19)
azn

and noting that A and B commute (A + B = B + A)

ik AxB | ik, AxA
u(x + Ax,z) = R u(x,z) (20)

equation 17 can now be solved to give

,
. Ax p”
ik, 2% (m? - 1) i

2 k
u(x + Ax,z) =e¢  ~ F e ° Flux,2)] . ¥3))

Equation 21 is the formula that must be computed at each range step, Ax, based on the field at the
previous range.

When the refractive index, m, is range dependent, the quantities A and B no longer commute, in
which case the steps leading to the right-hand side of equation 13 become more complicated.
Approximations and assumptions have to be made in which one finally obtains the same equation for the




tield (equation 21), but with a somewhat complicated error term. This error term depends on the range
step size, Ax, the frequency, and the refractive index gradients. Therefore, one can make the errors
associated with a range-dependent m in equation 21 small by taking a sufficiently small step size and
assuring that m(x,z) varies slowly with range.

2.3 PROPAGATION FACTOR AND PATH LOSS

The final step is to determine the pattern propagation factor, F, once the field u(x,z) has been
computed. The pattern propagation factor is defined as the ratio of the magnitude of the field at a point
in space |El, to the magnitude of the field at the same point under free-space conditions, IE,l:

|

F = 22)

gg)’

-~
<

The field attributable to a horizontally polarized source in free space, located on the vertical axis, is
proportional to (in spherical coordinates)

ik R
E,~° = {% sinﬂ]
(23)
2 2 1/2
R = (r" +r,-2r r,cosb)

where r is the distance to the source from the point of reference and @ is the angle with respect to the
vertical between the source and tield point. Recalling equation I, the propagation factor is now written

_ . oR?
(r sin(3)3/2

it
E

F= 24)

[8]

where the normalizing constant is absorbed in | (r,0)!. Changing from spherical to Cartesian coordinates,
R becomes

172
R = [x? + (z-2)*1'% = x|1 + @ _;")2 <x for _XZ") «I 25)
X
and the denominator becomes
rsinf = asin® ~ad =~ x ftor x/a «| (26)
to obtain for F
F=lpx2)lyx =hxzl k. 2n
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u(x,z) is a complex tunction, possessing a real and imaginary component

u(x,z) = u, +i uy (28)
In dB, F is then
2 2 2
10 fog F~ = 10 log [(ux + uy) X ]. (29)
Path loss, in dB, is defined as
2 =2
loss = -10 log |2 F . (30)
(4w x)°
Using equation 29, path loss is calculated as
12 (uz + uz)
loss = -10 log | — % Y|, (31

(41:)2 X
2.4 NUMERICAL IMPLEMENTATION

The Fourier transform in equation 21 is implemented by using an FFT algorithm. The transform
size is kept at a fixed number. The maximum propagating angle above the horizontal and the maximum
height is made to depend on the frequency, thereby limiting the program to low-altitude, small-angle
propagation effects at high trequencies. The sample size is based on Nyquist's criterion

Zmax * Pmax = ™N (32)
where z . is the maximum height in the ‘calculation domain and p_,. = kg, sin®,.., 0., being the
tull angular width above and below the horizontal for a full complex transform. Due to the nature of the
DFT, the field is abruptly truncated at z ., . resulting in reflections from the nonphysical upper boundary.

Filters are used to attenuate the ficld smoothly at large heights and large propagation angles, to keep
reflections from entering the physical portion.

The field at any point above the Earth can be found by using image theory and the appropriate
boundary conditions. For a pertectly conducting surtace and horizontal polarization, the field must vanish
at the surface: u(x.0) = 0. The next step is to find an initial field [u(0,z)] for which equation 21 can
then be used to "march” the field out in range. One begins by noting that the field at range zero is
essentially the antenna aperture distribution, and that the far-field antenna pattern and its aperture
distribution are a Fourier transtorm pair:

0(0.2) 2 Ulop) = f(p). (33)

The antenna pattern f(p) is assumed to be symmetric about p = 0 (0 elevation angle). Introducing a
source height and elevation angle is easily done by using the Fourier transform shift properties




Wz -z) 2o T ). (34a)

P w(0,2) « L f(p - py). (34b)

where z is the source height and p,, is k,, sin 6, 6, being the elevation angle.

el

Zero elevation angle was used in all results presented in this report. A uniform aperture
distribution (essentially an omnidirectional antenna [f(p) = 1]) was used for the antenna pattern, making
the initial tield in p-space

-ipzg ipz, . .

U@©.p) = f(p)e - f(-p) ¢ = -2iC, sin(pz) 35)
where Cn is the normalizing constant and the two terms on the right-hand side of U(0,p) represent the real
and image fields, respectively. Note that U(O,p) is an odd function, resulting from a horizontally
polarized source with the boundary condition for a perfectly conducting surface. The initial field for a

vertically polarized source and its boundary condition (3u/dz|,_q = 0) leads to an even function.

A troposcatter model is included in PEPC and was taken from Yeh [15] and Rice, et al. [16]. For
a tull description of the model, reter to NOSC TD 1342 [17], pp 116-120.

To keep the error term (associated with a nonconstant m in equation 21) small, we must keep Ax
small. Ax is made to depend on the wavelength, thereby forcing the program to take small range steps
at large frequencies where it is needed. For a range-dependent environment, a new profile is obtained
at each range step from interpolation of user-specified profiles. The method of interpolation will be
discussed in section 3.2.




3.0 VALIDATION OF PE MODEL

3.1 COMPARISON WITH RANGE-INDEPENDENT ENVIRONMENTS

Some comparisons were made against a waveguide program called MLAYER, using several range-
independent environments. MLAYER was developed at NOSC by Baumgartner [18] and Pappert!.
Figures 6 and 7 show excellent agreement between PEPC and MLAYER for a 300-meter surface-based
duct at L band, and a 20-meter evaporation duct at X band, respectively. Field strength in dB relative
to free space is plotted versus height. A standard atmosphere at S band was also used for comparison,
but results between the two models were indistinguishable, so that case is not shown here.

A radiometeorological investigation was conducted jointly by the Departments of Scientific and
Industrial Research of the United Kingdom and New Zealand under the name of the Canterbury Project
in Canterbury Province in the South Island of New Zealand [10]. Transmitters were placed in aircraft
that flew a sawtooth pattern from over 100 km offshore inward toward the receiving ground stations
located at Wakanui Beach. Data were taken from the Canterbury Project for the afternoon of
5 August 1947.  This case was chosen because the environment varied little with range. A strong
surface duct was present trom 20 km oftshore out to 100 km, as shown by figure 8. Slant paths were
used for the model to represent ditterent "legs” of the aircratt flight paths. Figures 9 and 10 show the
X-band and S-band cases, respectively, against the observed radio data. Both figures display field
strength in dB relative to free space versus height for one "leg" from 65 to 75 nautical miles, in which
the aircraft descended trom 1000 ft (at 65 nmi) to near the ocean surface (at 75 nmi). The model
compares well with the observed data.

3.2 COMPARISON WITH RANGE-DEPENDENT ENVIRONMENTS

Three profiles, along with their corresponding ranges, were specitied as inputs to PEPC to simulate
an environment that varied trom a standard atmosphere at the antenna, to a 300-meter surface-based duct
at 100 km, and back to a standard atmosphere at 200 km. Figure 11 shows a lateral heterogeneous
raytrace for this environment, using a program developed at NOSC {2]. The dotted portion of the plot
shows how the trapping layer varies with range in height and thickness. The PE model requires a profile
at each range step. The three 4-point protfiles and their ranges were specitied as inputs and, internal to
the program, linear interpolation was used to obtain the height and M-unit value for each point at each
range step based on the two nearest specified profiles. This method of interpolation provides for logical
and smooth transitioning ot the various features between specified profiles. Figure 12 shows the PEPC
coverage diagram for this environment. Comparing figures 11 and 12, one can see that the field contours
trom PEPC follow the ray paths in tigure 11.

l Pappert, R. A. 1984, "Field Strength and Path-loss in a Multilayer Tropospheric Waveguide Environment,”

NOSC TN 1366 (October). Naval Ocean Systems Center, San Diego, California. NOSC Technical Notes
are working documents and do not represent an official policy statement or the Naval Ocean Systems Center.
For further information, contact the author.
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3.2.1 Guadalupe Island Measurements

Radio and meteorological data were measured concurrently in over-water paths from Guadalupe
[sland to San Diego during 1947 and 1948 [9]. Figures 13 through 15 show the data records for 3 days
of measurements. In this experiment, receivers were located on the ground and the transmitting and
meteorological equipment was located in the aircraft. The flight paths are shown in the upper portion of
the figures. The aircratt took radio measurements on both ascending and descending paths, but only made
meteorological measurements on the ascending paths. An attempt was made to represent the "slant”
profiles vertically at ranges corresponding to the optimum coupling height. (The optimum coupling height
is the height at which the base of the inversion layer is measured, and at which placement of an antenna
will yield maximum angular trapping.)

The measurements of 12 March 1948 show a slowly increasing trapping layer from 40 to 200 nmi.
Five linear segments were taken of each profile. In figure 16, the five profiles are displayed in M-units
at each range corresponding to the optimum coupling height. The change in thickness and height of the
most important features of the profiles are shown. Comparisons between PEPC with observed data are
shown in figures 17 through 25 for the 170-, 520-, and 3300-MHz cases. Again, slant paths were used
tfor the model to simulate the flight paths of the aircratt. All height-gain plots are displayed in dB relative
to tree space versus height. Standard atmosphere is shown as a reference.

At 170 and 520 MHz, there is excellent agreement at all three slant paths between PEPC and the
observed data. For the S-band case, figures 23 and 24 agree well, while at greater ranges (figure 25)
PEPC begins to deviate at low heights from the measured data. This discrepancy may be attributable to
the undetected presence ot an evaporation duct, which would atfect higher-frequency signals. Accounting
tor an evaporation duct would give higher signal levels at the lower receiver heights. Figures 26 through
28 are PEPC coverage diagrams for the 170-, 520-, and 3300-MHz cases, respectively. In the S-band
case (figure 28), it is more apparent how the environment changes. Comparing figures 16 and 28, it is
easy to see how the field follows the trapping layer as it varies with range.

To assume a homogeneous environment will not give a clear picture of what is really happening.
Figure 29 shows a coverage diagram for a homogenous environment at S band, using the profile at 39 nmi
in figure 16. While the coverage diagram may match that of figure 28 at close ranges, it differs greatly
at large ranges. One may try to "average” the protiles and assume that, at all ranges, the field is "close
to” the field under actual range-dependent conditions, but using the "average" profile is also unsuitable.
The average profile was taken from the data record in figure 13 for two height-gain plots for 170 and
3300 MHz (figures 30 and 31, respectively). The difference between the predicted and the measured
tields are substantial.

Height-gain plots are shown in figures 32 through 43 for the environment on 8 April 1948. Again,
there is good agreement between PEPC and the measured data at low frequencies. At S band, there is
a big discrepancy for large ranges and high receiver elevations. One can only speculate that the presence
of an elevated trapping layer went undetected, yielding low signal levels at large ranges. The
corresponding coverage diagrams for the three frequencies are shown in figures 44 through 46.

Figures 47 through S5 are the height-gain plots for the environment of 13 November 1947. There

is excellent agreement at all frequencies and ranges. The coverage diagrams are shown in figures 56
through 58.




3.2.2 Canterbury Project Measurements

Figures 59 and 60 show two days of refractivity measurements from the Canterbury project. The
aircraft tlight paths are shown on the right-hand side. The trequencies used in this experiment were
predominantly S and X band, although some measurements were also made at 60 MHz. Two antenna
heights were used on the receiving ground station, at 26.5 and 86 ft. In the following plots, S1 channel
will refer to S band with antenna height of 26.5 ft, and S2 channel will refer to S band with antenna
height of 86 ft. Similarly, X1 and X2 channels will refer to X band with antenna heights ot 26.5 and
86 ft, respectively.

Figures 61 through 63 show height-gain plots for the environment measured on 19 June 1947. The
slant path used corresponded to tlight leg M~N. There is excellent agreement in all three cases. The
corresponding coverage diagrams are shown in tigures 64 through 66.

For the environment of 11 July 1947, two flight legs were chosen. Figures 67 and 68 show leg
G-H for the X1 and X2 channels, respectively, and figures 69 and 70 show the same channels for leg
H-I. Good agreement is shown for leg G~H, with somewhat good agreement for leg H-I. The
corresponding coverage diagrams are shown in figures 71 and 72.

388 n Surface-Based Duct

508 T
j PEPC
« - -« -+« MLAYER
'/
400 )(
e
£ - D,
= _?Eéz
T
)
w
T 268 %
_ - ——
160 T
8 ‘L T T T ;
208 240 200 168 128 89
PROPAGATION LOSS (dB)
Frequency (MHz): 13068. Receiver rgs (km ): 1868 .8

Antenna height (n ): 38.5
Hind speed (kn): 8.

Figure 6. Height-gain plot comparison of PEPC and MLAYER for 300-m
surface-based duct.
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Figure 8. Measured M-unit-versus-height profiles from Canterbury
Project environmental measurements for 5 August 1947.
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Figure 16. Interpolated M-unit-versus-height profiles for fixed ranges from
12 March 1948, with vanation in trapping layer height and thickness represented
by shaded areas.

Guadalupe Island - 12 March 1948

/ PEPC
»eeeee Observed
IR A Standard
2868 . /
. o
2160 | /
NN
1488 —
)
708
B T s T T L]
-78 -58 -38 -19 16 38
PROPAGATION FACTOR (dB)
Frequency (MHz): 178. Slant path from - to
Antenna height (ft): 190.09 ranges (mwi): 69.89- 89.8
Wind speed (kn): 8. heights(ft): 3500.9- 0.0

Figure 17. Comparisons between PEPC and measured radio data at 170 MHz
for 12 March 1948, along slant path from 69 to 83 nmi.
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Figure 18. Comparisons between PEPC and measured radio data at 170 MHz
for 12 March 1948, along slant path from 91 to 101 nmi.
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Figure 19. Comparisons between PEPC and measured radio data at 170 MHz
for 12 March 1948, along slant path from 115 to 130 nmi.
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Figure 20. Comparisons between PEPC and measured radio data at 520 MHz

for 12 March 1948, along slant path from 69 to 89 nmi.
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Figure 21. Comparisons between PEPC and measured radio data at 520 MHz

for 12 March 1948, along slant path trom 91 to 101 nmi.

25




HEIGHT (ft)

HEIGHT (ft)

Guadalupe Island - 12 March 1948

3500
) PEPC
. eeeesee Observed
: N N Standard
2808 | . N
2108 -1 . e //’
p
1488 : K\
700 -/
) - o
L T T T
-78 -58 -38 -18 18 39
PROPAGATION FACTOR (dB)
Frequency (MHz): 520. Slant path from - to
Antenna height (ft): 166.8 ranges (wni): 115.8- 138.6
Hind speed (kn): 8. heights(ft): 3500.8- 8.9

Figure 22. Comparisons between PEPC and measured radio data at 520 MHz
for 12 March 1948, along slant path from 115 to 130 nmi.
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Figure 23. Compansons between PEPC and measured radio data at 3300 MHz
for 12 March 1948, along slant path from 86 to 90 nmi.
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Figure 24. Comparisons between PEPC and measured radio data at 3300 MHz
for 12 March 1948, along ditferent slant paths (91 to 96 nmi).
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Figure 25. Comparisons between PEPC and measured radio data at 3300 MHz
tor 12 March 1948, along slant path trom 124 to 130 nmi.
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Figure 27. Coverage diagram for environment of 12 March 1948 at 520 MHaz.
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Figure 28. Coverage diagram for environment of 12 March 1948 at 3300 MHz.
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Figure 29. Coverage diagram using homogeneous profile measured at 39 nmu
taken from the 12 March 1948 data record.
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F:gure 30. Comparisons between PEPC and measured radio data, using the
average profile from the 12 March 1948 data record for 170 MHz.
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Figure 31. Comparisons between PEPC and measured radio data, using the

average profile from the 12 March 1948 data record for 3300 MHz.
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Figure 32. Comparisons between PEPC and measured radio data at 170 MHz
for 8 Apnil 1948, along slant path from 60 to 72 nmi.
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Figure 33. Comparisons between PEPC and measured radio data at 170 MHz
for 8 April 1948, along slant path from 81 to 95 nmi.
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Figure 34. Comparisons between PEPC and measured radio data at 520 MHz
for 8 April 1948, along slant path from 60 to 72 nmi.
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Figure 35. Comparisons between PEPC and measured radio data at 170 MHz
for 8 April 1948, along slant path from 118 to 136 nmu.
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Figure 36. Comparisons between PEPC and measured radio data at 170 MHz

for 8 April 1948, along slant path from 97 to 107 nm.
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Figure 37. Comparisons between PEPC and measured radio data at 520 MHz

for 8 April 1948, along slant path trom 81 to 95 nmi.
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Guadalupe Island - 8 April 1948
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Figure 38. Comparisons between PEPC and measured radio data at 520 MHz
for 8 April 1948, along slant path from 97 to 107 nmi.
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Figure 39. Comparisons between PEPC and measured radio data at 520 MHz
for 8 April 1948, along slant path from 118 to 136 nmi.
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Figure 40. Comparisons between PEPC and measured radio data at 3300 MHz

for 8 April 1948, along slant path from 60 to 69 nmi.
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Figure 41. Comparisons between PEPC and measured radio data at 3300 MHz

for 8 April 1948, along slant path from 85 to 95 nmi.
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Figure 42. Comparisons between PEPC and measured radio data at 3300 MHz
for 8 April 1948, along slant path from 97 to 104 nmi.
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Figure 43. Comparisons between PEPC and measured radio data at 3300 MHz
for 8 April 1948, along slant path from 126 to 136 nm.
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Guadalupe Island - 8 April 1948
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Figure 44. Coverage diagram for environment of 8 April 1948 at 170 MHz.
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Guadalupe Island - 8 April 1948
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Figure 45. Coverage diagram for environment of 8 April 1948 at 520 MHz.
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Figure 46. Coverage diagram for environment of 8 April 1948 at 3300 MHz.
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Guadalupe Island - 13 November 1947
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HWind speed (kn): Q. heights(ft): 9.9- 4006.9
Figure 47. Comparisons between PEPC and measured radio data at 170 MHz
for 13 November 1947, along slant path from 41.5 to 52.5 nmi.
Guadalupe istand - 13 November 1947
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Figure 48. Comparisons between PEPC and measured radio data at 170 MHz
for 13 November 1947, along slant path from 56 to 75 nmi.
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Figure 49. Comparisons between PEPC and measured radio data at 170 MHz
for 13 November 1947, along slant path from 77 to 90 nmi.
Guadalupe Island - 13 November 1947
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Figure 50. Comparisons between PEPC and measured radio data at 520 MHz

for 13 November 1947, along slant path from 41.5 to 52.5 nmi.
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Guadaiupe Island - 13 Novenber 1947
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Hind speed (kn): 8. heights(ft): 4000.08- 8.9
Figure 51. Comparisons between PEPC and measured radio data at 520 MHz
for 13 November 1947, along slant path from 56 to 75 nmi.
Guadalupe Island - 13 Novenber 1947
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Hind speed (kn): 8. heights(ft): 0.9- 4008.6
Figure 52. Comparisons between PEPC and measured radio data at 520 MHz
for 13 November 1947, along slant path from 77 to 90 nmi.
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Figure 53. Comparisons between PEPC and measured radio data at 3300 MHz
for 13 November 1947, along slant path from 41.5 to 50 nmi.

3860

2408

18608

1208

6688

Guadalupe [sland - 13 November 1947¢

PEPC
Observed
Standard

[

[

"
=
T T T
-79 -58 -39 -10 18 J0
PROPAGATION FACTOR (dB)

Frequency (MHz) : 3308. Slant path fron - to
Antenna height (ft): 108.8 ranges (nmi): 61.8- 75.8
Wind speed (kn): 8. heights(ft): 3666.0- 8.9

Figure 54. Comparisons between PEPC and measured radio data at 3300 MHz
for 13 November 1947, along slant path from 61 to 75 nmi.
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Guadalupe I[sland - 13 November 1947
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Figure 55. Comparisons between PEPC and measured radio data at 3300 MHz
for 13 November 1947, along slant path from 77 to 87 nmi.
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Figure 56. Coverage diagram for environment of 13 November 1947 at 170 MHz.
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Guadalupe Island - 13 November 1347
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Figure 57. Coverage diagram for environment of 13 November 1947 at 520 MHz.
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Figure 58. Coverage diagram for environment of 13 November 1947 at 3300 MHz.
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Canterbury Project 19 June 1947 - S2 Chamne!l
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Figure 61. Comparison between PEPC and measured radio data at 3240 MHz
from Canterbury Project data record for 19 June 1947.
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Figure 62. Comparisons bet
from Canterbury Project dat
26.5 feet.

ween PEPC and measured radio data at 9875 MHz
a record for 19 June 1947, with antenna height at
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Figure 63. Coripansons between PEPC and measured radio data at 9875 MHz
from Canterbury Project data record for 19 June 1947, with antenna height at

Canterbury Project 19 June 1947 - X2 Channel

A J
. . PEPC
* e “weeeee Observed
< '. ; Standard
— N
-+ T v T

-78

Frequency (MHz): 9875.
Antenna height (ft): 86.8
Wind speed (kn): 6.

86 feet.

L4
-58 ~-30 -10 16
PROPAGATION FACTOR (dB)
Slant path from - to

ranges (mmi): 26.8- 38.9
heights(ft): 08.6- 1000.0




Canterbury Project 19 June 1947 - S2 Channel
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Figure 64. Coverage diagram for frequency and environment from figure 61.
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Figure 65. Cover diagram for frequency and environment from figure 62.
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Figure 66. Cover diagram for frequency and environment from figure 63.
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Figure 67. Comparisons between PEPC and measured radio data for flight path

labeled GH from Canterbury
height at 26.5 feet.

Project data record of 11 July 1947, for antenna
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Figure 68. Compariscns between PEPC and measured radio data for flight path
labeled GH from Canterbury Project data record of 11 July 1947, for antenna

height at 86 feet.
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Figure 69. Comparisons between PEPC and measured radio data for flight path
labeled HI from Canterbury Project data record of 11 July 1947, for antenna

height at 26.5 feet.
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Figure 70. Comparisons between PEPC and measured radio data for flight path
labeled HI from Canterbury Project data record of 11 July 1947, for antenna

height at 86 feet.
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Canterbury Project 11 July 1947, X1 Channel
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Figure 71. Coverage dingram for frequencies and environments from figures 6770,
antenna height at 26.5 feet.
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Figure 72. Coverage diagram for frequencies and environments from figures 6770,
antenna height at 86 fect.
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4.0 CONCLUSIONS

The parabolic equation model, PEPC, has been shown to predict, with reasonably good accuracy,
tield strengths for range-dependent and range-independent environments. While improvements must be
made to account tor surface roughness and other environmental effects, for the simplest case used here
PEPC agreed quite well with experimental data.

As mentioned betore, horizontal homogeneity occurs in the troposphere almost 86% of the time.
When the environment is inhomogeneous, the model presented here provides a means by which the field
strengths can be predicted within these environments. The comparisons given in this report between
predicted field strengths and measured data within measured range-dependent environments show the
importance of including horizontal inhomogeneity in field prediction models. Care must be taken,
however, in applying meteorological measurements to the models. A detailed knowledge of the
refractivity structure involved is needed to make the best possible estimate of how the environment is
changing.
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Table A-1. M-unit versus height profiles and corresponding
ranges from Guadalupe Island data record tor 12 March 1948.

Environment for 12 March 1948

Profile #1 - Range at 0 nmi Profile #2 ~ Range at 39 nmi

Height(ft) M-units Height(ft) M-units
0. 337. 0. 337.
540. 358.44 540. 358.44
803.407 324.736 803.407 324.736
1217.17 334.888 1217.17 334.888
1231. 334.494 1231. 334.494
3500. 447.400 3500. 447.400

Profile #3 - Range at 85.5 nmi Profile #4 ~ Range at 125. nmi

Height(ft) M-units Height(ft) M-units
. 337.169 . 335.819

740. 365.34 1190. 382.84
1080.63 343.702 1574.55 357.962
1490.61 356.039 1889.38 371.111
1652.63 351.889 2096.94 371.011
3500.00 430.919 3500.00 430.957

Profile #5 - Range at 160. nmi Profile #6 - Range at 193. nmi

A-2

Height(ft) M-units Height(ft) M-units
. 333.676 0. 331.056
1145.00 378.220 1420.00 382.920
2140.00 370.715 2387.50 383.544
2584.38 398.294 2718.44 410.029
2923.08 404.423 2892.62 399.773
3500.00 429.802 3500.00 430.849




Table A-2. M-unit versus height profiles and corresponding
ranges from Guadalupe Island data record for 8 April 1948.

Environment for 8 April 1948

Profile {1 - Range at 0 nmi Profile #2 - Range at 41.1 nmi

Profile #3 - Range at 56.9 nmi

A-3

Profile #4 - Range at 93.2 nmi

Height(ft) M-units Height(ft) M-units
0.0 340.007 0.0 340.007
349.827 352.781 349.827 352.781
574.223 309.753 574.223 309.753
968.295 317.703 968.295 317.703
1207.64 345.040 1207.64 345.040
1488.62 351.822 1488.62 351.822
1503.41 358.671 1503.41 358.671
1809.71 359.083 1809.71 359.083
2194.20 375.590 2194.20 375.590
2293.07 374.704 2293.07 374.704
2563.72 393.768 2563.72 393.768
4000.00 447.772 4000.00 447.772

Height(ft) M-units Height(ft) M-units
0.0 341.728 0.0 341.806
368.239 352.042 672.037 368.492
577.280 308.902 983.245 320.817
1005.35 320.349 1231.19 343.194
1260.99 348.064 1388.96 347.223
1475.73 352.767 1503.41 358.671
1503.41 358.671 1809.71 359.083
1809.71 359.083 2194.20 375.590
2194.20 375.590 2293.07 374.704
2293.07 374.704 2563.72 393.768
2563.72 393.768 4000.00 447.772
4000.00 447.772
Profile #5 - Range at 132.7 nmi
Height(ft) M-units
0.0 342.668
733.564 369.305
1059.78 323.572
1251.12 345.108
1539.68 361.967
2030.24 368.838
2153.73 373.425
2182.62 371.732
2363.42 384.754
4000.00 443.040




Table A-3. M-unit versus height profiles and corresponding

ranges from Guadalupe Island data record for 13 November 1947.

Environment for 13 November 1947

Profile #1 - Range at 0 nmi

Height(ft) M-units
0. 317.9
216.865 314.73
1617.62 362.87
3084.17 420.63
4000. 456.18

Profile #3 - Range at 71.4 nmi

Height(ft) M-units
0.0 331.331
393.097 335.389
618.075 351.704
820.575 355.378
1008.75 362.805
1359.41 348.897
2155.46 371.392
3182.06 414.038
4000.00 440.863

Height(ft) M-units
0. 322.762
795.918 345.177
1116.23 340.451
1553.31 354.080
3182.06 414.038
4000.00 440.863
Profile #4 - Range at 126.9
Height(ft) M-units
0.0 306.607
518.528 321.198
790.755 336.550
926.370 335.692
1214.22 348.295
2017.49 373.394
2556.49 374.805
3684.10 410.625
4000.00 425.710

Profile #2 - Range at 37.5 nmi

nmi



Table A-4. M-unit versus height profiles and corresponding

ranges from Canterbury Project data record for 11 July 1947,

Environment for 11 July 1947 from Canterbury Project

Profile #1 - Range at O nmi
Height(ft) M-units

0. 322.5
140. 324.
530. 342.5

1000. 351.

Profile #3 - Range at 21.6 nmi

Height(ft) M-units
0. 337.5
25. 333.5
105. 336.
200. 327.
1000. 350.

Profile #5 - Range at 43.2 nmi

Height(ft) M~units
0. 339.
150. 331.
195. 326.
350. 330.
1000. 351.

Profile #2 - Range at 10.8 nmi

Height(ft) M-units
0. 335.5
60. 327.
200. 330.
270. 329.
1000. 350.

Profile #4 - Range at 32.4 nmi

Height(ft) M-units
0. 338.
40. 334.
165. 339.
285. 327.
1000. 350.

Profile #6 - Range at 56 nmi

Height(ft) M-units
0. 336.
80. 333.
200. 333.
270. 327.
1000. 347.5




Table A-5. M-unit versus height profiles and corresponding

ranges from Guadalupe Island data record for 19 June 1947.

Environment for 19 June 1947

Profile #1 - Range at 0 nmi

Height(ft)
0

220.
515.
1000.

M-units
304.
307.
315.5
318.1

Profile #3 - Range at 21.6 nmi

Height(ft)

25.
345,
425.
520.
600.

1000.

M-units
315.
312.
325.
323.5
326.
325.
339.6

Profile #5 - Range at 43.2 nmi

Height(ft)

375.
480.
650.
780.
1000.

M-units
307.
320.
322.
330.
328.
339.

A-6

Profile #2 - Range at 10.8 nmi

Height(ft)
10.
130.
195.
405.
500.
1000.

M-units
315.
309.
314.
306.
323.
317.5
335.8

Profile #4 - Range at 32.4 nmi

Height(ft)
20.
220.
330.
500.
730.
1000.

M-units
320.
313.
322.
322.5
329.5
336.
347.
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